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KOROTKOFF SOUNDS AT DIASTOLE-A PHENOMENON OF
DYNAMIC INSTABILITY OF FLUID-FILLED SHELLS*

MAX ANLIKERt and K. R. RAMANt

Abstract-A theoretical analysis of the phenomenon of Korotkoff sounds at diastole is presented together with
experimental results. The formulation of the mathematical analysis is based on facts derived from fundamental
experiments with a laboratory model which simulates the brachial artery and the sphygmomanometer and
which exhibits Korotkoff sounds under controlled conditions. The Korotkoff sounds at diastole are inter­
preted as a phenomenon of dynamic instabIlity (oscillations with increasing amplitude), the instability being
induced by the application of a pressure cuff. The results of the analysis verify experimental observations
regarding the effects of the cuff length, wall thickness and elasticity of the vessel on the diastolic pressure.
They also yield good approximations for the difference between the auscultatory diastolic pressure and the
true minimum of the pressure in the simulated artery as well as in the human brachial. The results indicate
that the auscultatory reading is always higher than the true minimum of the intraluminal pressure by an amount
that depends on the physical and geometric properties of the vessel. Besides this, the theoretical analysis predicts
that the Korotkoff sounds near the diastolic pressure have predominantly low frequency components and that
with increasing cull' pressure the sounds not only become more mtense but also begm to include components
with a higher pitch.

NOTATION

k

a radius of the mIddle surface at equilibrium configuration (cm)
h2

nondimensional parameter, 12a2

the speed of sound of the fluid (cm/sec)
group velocity (em/sec)
phase velocity of moving disturbance (cm/sec)
frequency of disturbance (cps)
thickness of vessel wall (cm)

21t
wave parameter, ;:

apparent mass of the fluid per unit area (g/cm2)

auscultatory diastolic pressure (dyn/em2 or mm Hg)
external (or cuff) pressure (dyn/cm2)

perturbed intra-arterial pressure (dyn/cm2)

unperturbed quasi-static intra-arterial pressure (dyn/cm2)

transmural pressure P;o - P. (dyn/cm2
)

critical value of I!..p at which system becomes unstable
d' . I . I I TIO(l-yJ)non ImenSlOna axta stress resu tant, Eh

al!..p(l- y2)
nondimensional circumferential stress resultant, Eh

radial coordinate (cm)
number of waves in the circumferential direction
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time (sec)
small displacement of a general point of the middle surface from equilibrium in the aXIal,
circumferential, and radial directions, respectively
perturbation velocity of a fluid particle
axial coordinate
coefficients defined In equatIOn (16)
Young's modulus of vessel wall (dyn/cm2)

modified Bessel function of the first kind of order s
length of the pressure cuff (em)
linear partial differential operators
principal radii of curvature of the middle surface (em)
values of R 1 and R2 for unperturbed equilibrium configuration (em)
resultant tensions in the axial and circumferential directions (dyn/cm)
values of T1 and T2 for unperturbed equilibrium
initial axial tension (tonus) of the vessel (dyn/cm)

x
nondimensional axial coordinate, ­

a
circumferential coordinate
wave amplitude
phase angle

(
(Q2a2)tk 2a2 _

Ct
wavelength of disturbance (em)

l_v2

parameter associated with the inertia of the fluid, E'h"a2mr (sec2
)

I-v2

parameter associated with the inertia of the vessel wall, E'h"a2Pwh (sec2
)

Poisson's ratio
density of the fluid (g/cm3)

density of the vessel (g/cm3
)

circular frequency (rad/sec)
duratIOn of the unstable phase of the cardiac cycle (sec)
duration of the disturbance to travel through the cuff (sec)
velocity potential of perturbed fluid motion (cm2/sec)

1,,(0 .
Pra 0;(0 a complex quantIty

circular frequency of perturbation
Laplacian operator

1. INTRODUCTION

AMONG the many diagnostic parameters used in clinical medicine, the arterial blood
pressure is of particular significance. It is not only instrumental in the diagnosis of many
diseases but also a measure of cardiovascular performance. Even though the blood
pressure varies greatly within the circulatory system, the usual meaning of the term
"blood pressure" is the pressure in the brachial artery in the upper arm There are several
ways in which the pressure in blood vessels can be determined. A state-of-the-art summary,
with a brief historical review and an extensive reference list pertaining to this topic, is
given in a NASA publication by Smith and Bickley [1] which is oriented primarily toward
nonmedical scientists and engineers.

The methods of measuring blood pressure can be divided into two major categories:
direct and indirect methods. The direct methods make use of pressure sensing devices
which are inserted into the blood vessel of interest The indirect techniques rely on a
reaction to the blood pressure that can be measured outside that part of the body in
which the vessel of interest is located. While the direct techniques offer reliable and
accurate values for the blood pressure and can be applied to most parts of the circulatory
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system, including a heart cavity, they are not widely used since they require the penetration
of arteries or veins with foreign objects and thus involve the risk of infe\?tion.

The variation of the pressure in the brachial or other large arteries with time is
graphically illustrated in' Fig. 1. The maximum or systolic pressure occurs during the
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FIG, 1. Pressure variation in brachial or other large artery during cardiac cycle.

contraction of the heart while'the minimum or diastolic pressure is the residual pressure
at the instant of opening of the aortic valve. According to the medicalliteratur,e, a healthy
young adult has normally a systolic pressure of approximately 120 mm Hg and a diastolic
pressure of 70 rom Hg. (In stating these figures it should be emphasized that the blood
pressure is controlled by numerous biological factors as well as the emotional state of
the person.) The difference between systolic and diastolic pressure is the pulse pressure.
The arithmetic mean of systolic and diastolic pressure is usually referred to as the mean
pressure. The arithmetic mean is somewhat higher than the integrated mean pressure,
since the period of contraction (systole) is shorter than that of expansion (diastole).

Among the indirect methods of measuring the blood pressure, the so-called ausculta­
tory technique, which makes use of the phenomenon of Korotkoff sounds, is most widely
used. This technique was introduced in the early 1900's and is essentially a modification
of a method devised by Riva-Rocci in 1896. As an indirect way of determining the systolic
pressure, Riva-Rocci suggested the use of a pneumatic cuff to measure the compression
pressure required to obliterate the pulse. The pneumatic cuff used for this purpose is
referred to as a cuff sphygmomanometer. A modem sphygmomanometer consists of a
compression bag with an adjustable cuff, a manometer to measure the applied pressure,
a hand pump and a controllable exhaust that allows a gradual reduction of the pressure.
Using such a sphygmomanometer, the auscultatory technique allows an approximate
determination of both the systolic and diastolic pressures in certain arteries. In the usual
application of the auscultatory technique [2], the cuff is wrapped around the upper arm
and secured. To minimize effects of gravity, the person is placed in such a position that his
heart is at the same level as the cuff. A stethoscope is placed over the brachial artery at the
elbow and the cuff is rapidly inflated to a pressure level of approximately 30 rom Hg
above the point at which the artery remains fully occluded during the entire cardiac
cycle, that is, 30 mm Hg above the pressure at which the pulse is fully obliterated. The
cuff pressure is then gradually reduced at a rate of approximately 3-5 mm Hg/sec. As
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soon as the cuff pressure drops to a certain critical limit, one begins to hear with each
beat a characteristic kind of tapping sounds, which are called Korotkoff sounds. As the
cuff pressure is reduced further, these sounds become louder, then dull and muffled,
and finally disappear at a certain lower critical limit of the cuff pressure. The cuff pressure
at which the sounds are first heard (upper critical pressure) is interpreted as an approxi­
mation of the systolic or maximum pressure, while the cuff pressure at which sounds
disappear (lower critical pressure) is interpreted as an approximation of the diastolic
or minimum pressure in the artery.

By comparing the readings for diastolic and systolic pressures obtained with the
aid of the auscultatory technique with corresponding values determined by direct methods,
it was observed that under normal conditions and for a healthy person the results may
differ by as much as 8 mm Hg. For certain patients, however, it is possible that the rela­
tive differences may exceed 25 per cent [3].

A review of the medical literature indicates that the basic mechanism by which the
Korotkoff sounds are produced has so far not been fully understood There are, though,
various hypotheses that have been advanced to explain the cause of sound production
[4-12], but none of them has been substantiated by a theoretical analysis, and in most
cases no conclusive experimental evidence was produced to corroborate the suggested
mechanism. A better understanding of Korotkofl sound production is not only of general
scientific interest but is also highly desirable in view of the strong reliance of clinical
and space medicine on the auscultatory technique.

It is generally accepted that the Korotkoff sounds are distinct and separate from heart
sounds and murmurs. Some authors studied only the murmurs accompanying the
Korotkoff sounds. After investigating the cardiovascular sounds McKusick [13] postu­
lated that the high-pitch murmurs following the Korotkoff sounds are due to eddy and
turbulence.

Scattered through the literature we find some qualitative data relating the cuff pressure
and the frequency spectrum of the Korotkoff sounds [14-17]. Although these data are
fragmentary they indicate that the spectrum extends from approximately 20 to 500 cps.
The possibility that the frequency spectrum and its variation with cuff pressure may
reveal pertinent information on the circulation (for example, signs of impending cardio­
vascular collapse during surgery) can be considered as an additional incentive for further
research on the mechanism of Korotkoff sound generation.

2. LABORATORY EXPERIMENTS PERTAINING TO THE PRODUCTION
OF KOROTKOFF SOUNDS ON A SIMULATED ARTERY

Some experimental studies with simulated arteries were recently made by Sacks et al.
[18] in order to investigate the relationship between the indirectly determined blood
pressure and the actual arterial pressure. Using a properly scaled pressure cuff, they have
demonstrated that pulsatile flow through rubber tubes exhibits the entire spectrum of
Korotkoff sounds and thus permits the study of the auscultatory method under con­
trolled conditions. They have shown that the effects of viscosity are relatively small since
Korotkoff sounds could be produced with test fluids having a kinematic viscosity between
1 and 30 cm2!sec. (Blood has a kinematic viscosity of approximately 5 cm2!sec, water
1 cm2/sec.) Also, it appears that the compressibility of the fluid is not essential to the
generation of the sounds since they were observed with both fresh steer blood and pure
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water. Moreover, effects of anisotropy and viscoelasticity of the vessel material seem not
to play a significant role, considering that the rubber tubes which exhibited Korotkoff
sounds showed no noticeable anisotropy and hysteresis under the prevailing conditions
given by the initial stresses (initial axial strain 20 per cent to simulate the tonus), the blood
flow and the surrounding medium. However, it was demonstrated that the elasticity of the
vessel wall has a marked influence on the auscultatory readings.

The inherent complexity of circulatory problems and the numerous parameters
associated with them renders a realistic theoretical study rather formidable. A critical
review of various attempts in the mathematical analysis of blood flow was recently pub­
lished by Fox and Saibel [l9]. To establish a minimal basis for a simple mathematical
formulation of the dynamic behavior of the brachial artery and its laboratory model,
the authors conducted a number of additional fundamental experiments [20J. For this
purpose the facility described in [18] and illustrated schematically in Fig. 2 was modified.

RESERVOIR, 1000 LITERS
PRESSURE 0-300 mm Hg) (MEAN)

SIMULATED TRANSPA~R~E:'N~Tf---------.:~~~~~~~~;:§
PRESSURE CUFF~
(LENGTH 50 CM) ~

SIMULATED ARTERY
(LATEX TUBE, 366 eM LONG,

DIA.• 2-5 eM, h,u=CH2,
INITIAL STRAIN- 20%)

PRESSURE PULSE GENERATOR
FREQUENCY,30-180 BEATS/MIN,
PULSE PRESSURE, 5-100 mm Hg)

FIG. 2. Schematic sketch of experimental apparatus.

By using a transparent pressure chamber and a translucent latex tube as the simulated
artery it was possible to observe some of the characteristic behavior of the vessel wall and
the fluid during the production of Korotkoff sounds. Visualization of the dynamic
behavior of the system was attained by adding food coloring to the test fluid Movies
and continuous recordings of pressures and sounds were made. Representative samples
of the data are given in Figs. 3 and 4.

Some of the results of the experiments conducted with the modified laboratory
model call for a revision of the widely accepted notions regarding the dynamic behavior
of the artery and the blood flow during Korotkoff sound generation. For example,
from movies and direct visual observations the following conclusions may be drawn:
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(1) There is an established fluid flow prior to the actual onset of the Korotkoff
sounds, i.e. at cuff pressures slightly above the systolic.

(2) The simulated artery is not fully occluded during any phase of Korotkoff sound
production.

(3) At diastolic cuff pressures the simulated artery undergoes only small deformations
and thus essentially retains its circular cylindrical shape during the entire cardiac
cycle. (This is, of course, not surprising since for near diastolic cuff pressures the
intraluminal pressure Pi exceeds the external pressure Pe during most of the cardiac
cycle and thus the time during which Pi < Pe is too short to allow the prevailing
forces to induce the collapse of the vessel.)

(4) Flow visualization with the aid of dye tracers does not reveal any turbulent bursts
or vortex shedding.
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FIG. 4. Oscillograph record of static pressures at various axial locations during cuff decompression.

Besides this we find from pressure recordings that the group velocity (pulse velocity)
increases rapidly with decreasing cuff pressure. For example, with the simulated artery
described in [20] the group velocity increases by approximately a factor of two between
systolic and diastolic pressures. The results of pulse velocity measurements for the entire
range of cuff pressures, obtained by monitoring the static pressures at two axial positions,
are given in Fig. 5.

In a recent publication on the genesis of Korotkoff sounds Chungcharoen [11]
implies that the flexibility of the vessel and its surrounding have no influence on the
generation of the sounds. Evidence contradicting this implication was established by the
following experiments:



FIG. 3. Motion pictures showing pulse wave propagation (right to left) during partial
occlusion of artery.
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(a) The elastic diaphragms of the simulated pressure cuff that sandwich the rubber
tube were replaced by rigid wooden blocks. A gradual reduction of the pressure on
the simulated artery induced by these blocks from a pressure level corresponding
to complete occlusion did not lead to audible Korotkoff sounds or other audible
sounds at any time.

(b) If a pair of moderately flexible Neoprene sheets (0,15 em thick) were used as
diaphragms instead of the rigid wooden blocks, again no sounds could be heard.

(c) With highly flexible Dental Dam sheets (0,02 cm thick) as diaphragms, Korotkoff
sounds of high intensity were produced, as in [181

(d) Korotkoff sounds could also be heard when each diaphragm consisted of two
Dental Dam sheets with foam rubber sandwiched in between to simulate the soft
tissue surrounding the brachial artery. However, the simulation of the soft tissue
led to higher systolic and diastolic pressures and caused the Korotkoff sounds
to be muffled compared with those generated without the foam rubber.
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FIG. 5. Pulse wave velocity in simulated artery as a function of cuff pressure. The velocities were
obtained by monitoring the static pressures at two axial positions.

3. A NEW HYPOTHESIS FOR THE GENERATION OF
KOROTKOFF SOUNDS

Like any other sound perceived by a human ear, the Korotkoff sounds heard with the
aid of the stethoscope are aggregates of vibrations whose frequencies and intensity place
them within the audibility range. It is conceivable that the Korotkoff sounds are due to
disturbances in the flow that are induced locally, that is, in the segment of the brachial
artery which is compressed by the cuff. However, it is also possible that they are a part of
the noise associated with pulsatile flow through the circulatory system that is selectiv~ly

amplified to a level above the audibility threshold in the compressed section of the brachial.
It is well known that pulsating flow through the complex system of blood vessels generates
a multitude of wave motions; the associated vibrations are not audible because their
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amplitudes and in many cases their frequencies are far below the audibility threshold [21].
Irrespective of the origin of the disturbances leading to Korotkoff sounds, it will be shown
that the application of a pressure cuff can change the system locally from one that is
dynamically stable to one that is intermittently unstable and thus capable of mechanically
amplifying certain low intensity vibrations (disturbances) to such an extent that they
become audible. The dynamic stability of the compressed brachial artery is examined
by studying its dynamic response to small disturbances. The response in this case is the
displacement of a general point of the middle surface of the artery from its equilibrium
position and its velocity.

In a preliminary analysis, only "stationary" perturbations are considered, even though
in reality it is the moving disturbance that is observed as a sound. This means that in a
first approximation the inertia effects associated with the propagation are disregarded
and the system interpreted as unstable for moving disturbances whenever it is found
unstable for "stationary" perturbations. In view of the large axial strains associated
with the initial tension in the wall, the equilibrium configuration of the vessel for a given
pressure difference Lip between the inside and the surrounding medium (transmural
pressure) may have to be determined by a nonlinear theory. However, in determining
the response to small perturbations of the equilibrium configuration it is assumed that the
system is linear. Thus the classical methods of linear elastic stability analysis [22-24]
can be applied and the stability analysis be reduced to the study of free small vibrations
of the system under the prevailing conditions given by the tonus Lip and the surrounding
medium.

Considering that the pulse frequency is of the order 1 cps and the audible frequency
range of the Korotkoff sounds approximately 20-500 cps, the variation of the intralu­
minal pressure Pio during the period of anyone of the sound components can be neg­
lected. Hence, for the purpose of investigating the amplification of these sound components
the intra-arterial pressure can be considered as quasi-static. If the external pressure Pe
exerted by the cuff on the brachial artery is gradually increased from zero (this is con­
trary to the clinical procedure but more convenient for theoretical considerations), one
expects the system to become unstable and behave like a mechanical amplifier as soon
as the pressure difference Lip = Pio - Pe between the quasi-static internal and external
pressures approaches a critical limit value (LiP)cril' The duration TO and the degree of
instability is, of course, dependent on Lip as graphically illustrated in Fig. 6 in which the
time-dependence of the arterial pressure is given by a sine wave and the cuff pressure is
restricted to levels corresponding to the diastolic phase. For small cuff pressures Pe
the system is stable and no amplification takes place, as indicated in case (a) of Fig. 6.
However, for sufficiently high cuff pressures Lip exceeds intermittently the critical limit
(Lip)cri!' as assumed in cases (b), (c) and (d), and during the corresponding time interval
To certain disturbances grow exponentially as they propagate through the compressed
section of the brachial artery. (Note that (LiP)cril is assumed to be negative in this illus­
tration.) When these amplified disturbances leave the unstable segment of the artery or
when the pressure cycle reenters the stable phase, dissipative mechanisms which are
disregarded in a preliminary stability analysis are responsible for the attenuation of the
response. In case (b) of Fig. 6 the cuff pressure is increased to a level at which Pio - Pe
is below the critical limit for a short time interval To. The duration of the instability at the
given cuff pressure and the corresponding amplifications of appropriate disturbances
are taken as insufficient to lead to audible sounds. In case (c) the cuff pressure is increased
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FIG. 6. Unstable phase of the cardiac cycle and its duration at near diastolic cuff pressures. In case (a)
the cuff pressure is below the critical value required for instability, hence no sounds are audible. In
case (b) the degree and duration of the instability are taken as insufficient to lead to sounds of intensity
and frequencies within the audibility range. A further increase of the cuff pressure as shown in cases (c)

and (d) results in more intense Korotkoff sounds.

further and the corresponding duration 'to of the unstable phase and the amplifications
are now sufficient to generate audible sounds. This means that the response of the system
to certain disturbances should exceed the audibility threshold. Here the sounds will still
be audible as the cardiac cycle reenters the stable phase and persist until attenuated
below the audibility threshold. Finally a still further increase in cuff pressure would
lead to a corresponding increase in the intensity of the sounds as shown in case (d).

On the basis of our laboratory experiments we may expect that for cuff pressures Pe
close to the diastolic pressure Pd the geometric configuration of the compressed brachial
artery remains essentially the same throughout the cardiac cycle. However, for higher
cuff pressures we must anticipate that the brachial artery assumes a partially collapsed
configuration, at least during a part of the pressure cycle. This implies that for cuff
pressures Pe above a certain level we have to expect (.1P)cnt to depend on Pe' and in
analyzing the stability of the system we may have to take the variation of the over-all
brachial geometry with the intraluminal pressure into consideration, even though this
change takes place rather slowly compared with the vibration associated with Korotkoff
sounds.

4. THEORETICAL MODEL FOR DIASTOLIC PHASE

For a theoretical analysis we assume the blood vessels to behave like shells made of
homogeneous isotropic material and filled with an inviscid incompressible fluid. Consider­
ing that the ratio of cuff length to vessel diameter is of the order 20, we shall treat the
shell in certain respects as infinitely long. At cuff pressures close to the systolic the simu­
lated artery is partially collapsed and thus assumes an entirely different geometry than at
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the diastolic phase. In describing the geometry of the artery in our mathematical analysis
we therefore have to make a distinction between these two phases. We shall restrict
ourselves to the diastolic phase considerations only, even though we have devised an
idealized mathematical model for the systolic case, the exact physical counterpart of
which has exhibited Korotkoff sounds in the laboratory.

In view of the fact that the simulated brachial essentially retains its circular cylindrical
shape during the diastolic phase of indirect blood pressure measurement, we shall start
out from a circular cylindrical shell and determine mathematically the dynamic response
of the system at cuff pressures close to diastolic.

5. MATHEMATICAL STABILITY ANALYSIS FOR DIASTOLIC PHASE

For the mathematical analysis of the vibratory motion of the brachial or its laboratory
model during the diastolic phase we refer the middle surface of the cylindrical vessel to a
set of cylinder coordinates x, p, r as shown in Fig. 7. For a given pressure difference, I1p

FIG. 7. Coordinate system.

(quasi-static~ and prescribed initial axial tension (tonus) the equilibrium configuration
of the middle surface (quasi-static) is assumed to be a circular cylinder defined by r = a.
The displacement of an arbitrary point of the middle surface from its equilibrium position
during a small perturbation has the components u, v, w measured in the x, pand r direc­
tions respectively. In all our models the material of the vessel wall is considered as having
uniform properties. In addition it is always assumed that the flow associated with the
disturbance is irrotational and that the effects of a mean flow and of body forces (gravity)
can be neglected This aJJows us to write the continuity equation in terms of the velocity
potential ljJ as
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(2)

(1)
2 02</> 1 02</> 1 0 f. o</»

V</>= ox2 +r 2 OP2 +~ or \' or = 0

and the linearized Euler equation in the form

o</>
Pi = Pfa;+PiO

where Pi is the perturbed intra-arterial pressure, Pr the density of the fluid, Pio the quasi­
static internal pressure in the absence of any disturbance (</> == 0). The velocity, v, of the
fluid corresponding to the disturbance is related to the velocity potential by

v = -V</> (3)

(4)

Adhering consistently to a linearized analysis, we can express the kinematic boundary
condition as

~; = - (~~) r~a
At this point it becomes necessary to specify additional characteristic features of the

mathematical model for the vessel. For our analysis we shall assume that the vessel
behaves first like a membrane and then like a shell, taking into consideration the effects of
coupling among the axial, radial and circumferential motions.

5.1 Simplified Membrane Model

In a first approximation we neglect the bending rigidity of the vessel wall. Further,
we assume that the displacement components u, D, ware completely independent, which
allows us to disregard the motion of the vessel wall in the axial and circumferential
directions.

As dynamic boundary condition at the middle surface we'have

T1 T2 02W
Pi-Po :;;;; R

1
+R

2
+pwh ot2 (5)

where R1 and R2 are the principal radii of curvature, T1 and T2 the corresponding stress
resultants and Pw the density of the vessel wall. The radii of curvature are taken as positive
if the center of curvature lies within the fluid. The force equilibrium in the radial direction
as expressed by equation (5) does not account for the fact that the internal pressure Pio is
acting on a smaller surface area than the external pressure Po' (This fact is usually ignored
since in most investigations the wall thickness is assumed to be very small. A notable
exception in this regard was made by Armenakas and Herrmann [25]~ In presence of
the disturbance w, the equation for the bounding surface can be written as

r = a+w(x, p, t) (6)

With (6) the principal radii of curvature of the wall are in a first approximation given by

1 02W

R
i

= - ax2 (7)

~ = ~_..!:.. (w+ 02W
) (8)

R2 a a2~ ap2
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(10)

Substituting (7) and (8) into (5) and making use of relation (2), we obtain after linearization

(
i3¢) 02W T2 T 2( 02W) 02 W

Pe = Pr at r~a+ TI ox2---;+ a{. W+ ofJ2 + Pio - Pwh ot2 (9)

The tension TI in the axial direction is the result of an initially applied axial tension TID
(the simulated artery was subjected to a strain of 20 per cent), the addition of a trans­
mural pressure !1p = Pio - Pe and the displacement of the vessel wall from its equilibrium
position. Assuming that the ends of the artery are restrained from moving in the axial
direction after the application of the initial tension we have

E h
T1 = TIO+vat.p+v~-2 ~W

I-va

where E is Young's modulus and v the Poisson ratio. The radius a of the middle surface
of the cylinder defines the equilibrium configuration resulting from the application of
the initial axial tension TIO and the transmural pressure t.p. The tension in the circum­
ferential direction can be written as

E h
T2 = at.p+-

I
--2 -w
-v a

For ¢ == 0 (static equilibrium) we have W == 0 and

(11)

1 1
-=-=0
R 1 R~ ,

(12)

TI = Tl = T10+vat.p

T2 = T~ = at.p

(13)

(14)

s = 0, 1,2,3, ....

We know that the pressure pulse induces small fluctuations of the cuff pressure Pe in
the diastolic phase. However, since we are primarily interested in the unstable portion
of the cardiac cycle, which we expect to be of short duration, we may assume that Pe =
Pio - t.p is independent of the small disturbance. Retaining only linear terms we can
therefore express the dynamic boundary condition (9) as

(
o¢\ 02W E h t.p (02W) 02W

Pr at} r~a +(Tlo+vat.p) ox2 -1-v2 a2w+~ W+ ofJ2 -Pwh ot 2 = 0 (15)

In addition we assume now that either the boundary conditions at the ends of the com­
pressed portion of the brachial are of an appropriate nature or that we may treat the com­
pressed section as infinitely long. This allows us to give a set of basic solutions of the
continuity equation (1) in terms of cylinder coordinates of the form

</Jsk = I.(kr)[Askcos(sfJ)+Bsksin(sfJ)] [Cskcos(kx)+Dsksin(kx)]cos(<Tt-e) (16)

k = 2n
A'

where s is the number of waves in the circumferential direction, A the wave length in the
axial direction, ka the corresponding wave number, J.(kr) the modified Bessel function
of order s, and <T the circular frequency of the oscillation. According to (4) the correspond­
ing set of displacements W sk of the bounding surface (artery wall) has the form
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where

kaI~(ka) (Ask cos(sfJ) +Bsk sin(sp)][Csk cos(kx) +Dsk sin(kx)] sin(O"t -e)
O"a

(17)

It should be emphasized that the set of solutions defined by (16) and (17) includes non­
axisymmetric disturbances while all investigations on blood flow known to the authors
restrict themselves to axially symmetric flow and response, including the recent publi­
cations by Mollo-Christensen (26,271 Lambert (28] and Narasimhan [29l The circular
frequency 0" is obtained from the dynamic boundary condition (15) by substituting (16)
and (17):

2 _ 1 Eh r 1 a/).p 2 2 2 TlO 2 J
0" - aIs(ka) a2 [1-vz+ Eh (8 +vk a -1)+ Eh k aJ

pjl+ PfkaI~(ka)

(18)

For dynamic stability we must require 0"2 > O. We note that instability (0"2 ~ 0) can
occur for 8 = 0 or 8 > 0 depending on the sign of /).p. The amplification of a disturbance
during its travel through the unstable segment of the artery is exp 100It where·. is the
smaller value of either the duration .0 of the instability or the time .1 required for the
passage of the disturbance through the cuff (t = .1 if.1 < .0; • = .0 if to < .1)' Since
10"1 as well as .0 and .1 are functions of /).p, we may expect the amplification to depend
on /).p. Consistent with the assumption that the intra-arterial pressure can be considered
as quasi-static as far as the Korotkoff sound generation is concerned, we introduce an
appropriate average for /).p during the unstable phase (see Fig. 8) for an estimate of the
amplification.
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FIG. 8. Average transmural pressure t!.p dunng unstable phase.
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Results of membrane analysis

(a) axisymmetric case (s = 0)

MAX ANLIKER and K. R. RAMAN

Eh 2 2
--2+ T10k a
I-v

!1p ~ a(l-vk2a2 ) ,

Eh 2 21=7+ T10k a

a(vk2a2 -1)

A > 2na~

A< 2na~

(19)

For ), > 2na~ the transmural pressure !1p required for instability is above the
range of interest for Korotkoff sound generation, while for i. < 2na,,~ the corres­
ponding !1p is of much greater magnitude than that obtained for s > O.

(b) nonaxisymmetric case (s > 0)

Ell 2 2
-1-2+ Tlok a
-v

(J2 ::::;; 0 if !1p::::;; (20)
a(s2 -1 + vk 2 a2)

For nonaxisymmetric disturbances and parameters corresponding to the laboratory
model described in [20] the amplification factor exp'j(Jlr reaches magnitudes of the
order exp 30 (on the basis of a linearized theory, neglecting all dissipation and taking
r = 0·1 sec). This means that according to the simplified membrane model only non­
axisymmetric disturbances lead to Korotkoff sounds. Nonaxisymmetric flow patterns
have been observed by Block [30], McDonald and Helps (31] by means of motion
pictures which show helical patterns of erythrocyte and dye marker flow. We also
note that with increasing s the pressure difference required for instability approaches
zero. However, taking into consideration that with increasing s the effects of even a
small bending rigidity of the vessel wall can no longer be ignored, we have to impose
an upper bound on s, say s ::::;; 10, which points out the shortcomings of this simple
model. Disregarding this fact, we find that the onset of instability (near the diastolic
pressure) depends on the thickness ratio hla and also on the wave length of the dis­
turbance as illustrated in Fig. 9. On the basis of physical considerations we may
restrict the wave length i. in the axial direction to i ::::;; 2L, where L is the length of the
pressure cuff. As a representative example we obtain for the experimental model des­
cribed earlier (!1p)crit ~ - 6·9 mm Hg (for s = 10 and wave length A ~ 60 cm), which
means that the auscultatory diastolic pressure is approximately 6·9 mm Hg higher
than the minimum intra-arterial pressure of the simulated brachial.

From the graphs in Fig. 9 and from equation (18) we make the following deductions:
(1) The auscultatory diastolic pressure Pc = Pd is always higher than the minimum of
the intra-arterial pressure. This is consistent with the observations made with the
laboratory model [18].
(2) An increase of the thickness to radius ratio ilia leads to an increase of Pd for a given
Pio which is also in agreement with the results reported by Sacks et al. [18].
(3) An increase of the wave length beyond a certain limit has no noticeable effect on
Pd' This implies that there is an optimal length for the pressure cuff beyond which
the measurement is unaffected by the cuff length, as pointed out also by Karvonen
et at. [32].
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(4) A limitation to shorter wave lengths (which is equivalent to a reduction in cuff
length, since the longest wave length is always twice the cuff length) also results in an
increase of Pd'
(5) Likewise, an increase of Young's modulus and/or the initial axial tension TlO causes
an increase of Pd'
(6) With increasing wall mass Pwh the diastolic pressure increases while the intensity of
the Korotkoff decreaSes.
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FIG. 9. Stability boundaries for the simplified membrane model.

For the sake of clarity it should be stressed that whenever an increase of Pd for a
given Pio is effected, the discrepancy between the indirectly measured diastolic pressure
and the true minimum of the intra-arterial pressure is increased Moreover, we should
mention that the above facts are verified in the next section (5.2) by a substantially
improved theoretical analysis.
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(21)

5.2 Shell Model

Fo~ a second approximation we treat the vessel as an isotropic shell with bending
rigidity and take the interaction between the axial, circumferential and radial displacement
of a general point of the middle surface into consideration. In analyzing the dynamic
stability of the system based on this model we make use of the linearized equations for
circular cylindrical shells developed by Fliigge [33]. We introduce as dimensionless
stress resultants in the axial and circumferential directions respectively

T10(1-vl
}

ql = Eh

Further, we define as nondimensional axial coordinate

X
IX = ~

a
and shall use the abbreviation

h2

cl =-­
12a2

82 a2

V
2

= OIX2+ 0132

(22)

(23)

(24)

(25)

(26)

(27)

(28)

For small displacements from the equilibrium configuration r = a which the shell
assumes under uniform axial tension 11 = T1 0 +vaAp and a uniform transmural pressure
Ap = PlO - Pe we can write the governing differential equations as

alu (02U ow) a2
u

L u (u)+Ldv)+L 13(w)+(ql+Vq2) ~rx2+q2 0132-8; -f.l.w at2 = 0

02V (OZv ow) 02V
L 21(U)+ L Z2(v) +L Z3(w)+(Ql + vQ2) crx2 + Q2 0132 + 013 - f.l.w ot2 = 0

c1w (au OV 81W)
L31(U)+L32(V)+L33(W)-(Ql +VQ1) arx2 -Q2 011.- iJf3+ 0132

a1w
+ (f.l.w+ f.l.r) at2 = 0

The Lik'S represent linear partial differential operators, f.l.w and f.I.r inertia quantities
associated with the vessel wan and the fluid:

f.l.w = 1Et a2(pwh)

1 v1

f.I.r = Eh aZmr

where me is the apparent or virtual mass of the fluid. According to Fliigge [33] the linear
differential operators are given by
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(29)

(30)}v = Bsk sin(koet) sin(sfi) sin(at-e)

w = Csk sin(koet) cos(sP) sin(O"t - e)

The substitution of (30) into (26) leads to a set of linear homogeneous equations for the
coefficients Ask' Bsk , Csk containing a as a free parameter. We require the existence of
nontrivial solutions for Ask, Bsk , Csk and thus obtain as frequency equatiQn relation (31).

If we treat the shell as infinitely long, or assume that the boundary conditions are of
appropriate form, the partial differential equations (26) can be satisfied by

u = Ask cos(kaet) cos(sfi) sin(at - e)

Frequency equation:

J+v
--kas
2 l

I+v
--kas
2

=0 (31)

+(ql +Vq2)k2a2+ qzs2

- (/-lw +/-lr)erz

To determine the apparent mass me, we make use of the fact that the velocity potential
corresponding to the perturbation w is of the form

aI (kr) .
cf>sk = - kI~(ko) Csk sm(koet) cos(sfJ) cos(at - e) (32)
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By definition, we have

From (33) we deduce

MAX ANLIKER and K. R. RAMAN

(33)

l.(ka)
11lr = Pr kl~(ka} (34)

We note that the determinant in (31) is a polynomial of third order in (12 with s = 0,1,2,
3, ... and k = 2n/A. as free parameters. For given initial stresses T? and T~ we can deter­
mine from (31) the frequencies corresponding to each pair of values for sand k. As
stability criteria we have again (12(S, k) > O. If (12 ::::; 0 for any kind of disturbances, the
system is unstable.

Results of shell analysis

For the simulated arteries used in the experimental facility we find on the basis of
equation (31) the stability boundaries «(12 = O) and curves of constant amplification shown
in Fig. 10. The curves are plots of the critical pressure difference as a function of the
wave number ka for the parameter values corresponding to the laboratory model illus­
trated in Fig. 2:

h
- = 0'1; 0·2
a

ql = 0'15; 0·30

(12 = 0; -4 X 104

We note that now, in contrast to the simplified membrane analysis, the minimum critical
pressure difference for a given wave number corresponds to a unique value of s. The
critical pressure difference is given in terms of mm Hg. The frequencies indicated on the
abscissa correspond to a wave velocity (group velocity) of 650 em/sec (see section 6).
If we assume the duration of the instability to be 0·1 sec, the curve (12 = - 4 X 104 re­
presents the pressure differences necessary to produce amplifications of the order exp 1(111:'

= exp 20 for disturbances with the appropriate spatial variation defined by sand k.
From the fact that in each case the curves (12 = 0 and (12 = - 4 X 104 almost coincide, we
conclude that the system is highly unstable and thus acts as a strong amplifier as soon as
Pe > Pio-(.6P)crit· The rapid increase (note the logarithmic scale) of the critical pressure
difference with the wave number ka predicts the clinical and laboratory observations
that the Korotkoff sounds near the diastolic pressure have predominantly low frequency
components and that with increasing cuff pressure the sounds not only become more
intense but also begin to include components with a higher pitch. Besides this, from
Fig. 10 and the frequency equation (31) we conclude that the results ofthe stability analysis
based on the shell model confirm the findings of the membrane analysis regarding the
effects of the cuff length, h/a, E, T j 0 and Pwh on the diastolic auscultatory pressure. We
also note that (- .6P}crit = 6 mm Hg for the simulated artery (h/a = 0·1, a = 1·59 em,
ql = 0'15, E = 6·9 X 106 dyn/cm2

, v = 0'5~ Even though this pressure difference (-.6P}crit
is smaller than the values observed experimentally for diastole [181 it can be considered a
good approximation since the cuff pressure readings for the cessation of the Korotkoff
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FIG. 10 Stability boundaries and amplification curves for the shell model.

sounds are in general higher than the optimal value because of the imperfect auditory
acuity of the observer. In the experiment the cuff pressure was reduced at a rate of approxi­
mately 3 mm Hgfsec as in clinical practice, and since the Korotkoff sounds occur at the
pulse rate we can expect an error of up to 3 mm Hg.
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6. AMPLIFICATION OF MOVING DISTURBANCES

For the sake of simplicity we have so far ignored the inertia effects associated with
the propagation of disturbances in our stability analysis described in the preceding
section. Taking the compressibility of the fluid into consideration we can write the expres­
sions for the velocity potential and the radial wall displacement corresponding to a
propagating disturbance in the form

<l>(x, p, r, t) = }'ls('~) exp[i(kx+sp-mt)] (35)

, l~«()
w(x, p, t) = iam liO<IJ(x, p, a, t) (36)

where

(37)

(38)

and where m is the circular frequency of the moving disturbance with the wave number k
and Cf the speed of sound of the fluid. The velocity potential defined by (35) satisfies the
continuity equation

(39)

The radial displacement (36) complies with the kinematic boundary condition (4):

ow
at

(40)

Restricting ourselves to the membrane model we require <IJ and m to satisfy the dynamic
boundary condition (15) and obtain as frequency equation

2 2r h IsK) ] Eh 2 k2 2( A
am LPw +PfaO~(O =1_v2 + aL\p(s -1)+ a T10+vaup)

in which' and ka are complex numbers. We notice that equation (40) reduces to the
"old" frequency equation (18) if we take k2 = 0, Cf = 00 and define 0)2 = (J2. While
equation (18) yielded as criterion for instability (12 < 0 we now have to require for in­
stability

Since the expression

k2 > 0 for real m (41)

(42)

can have a negative real part with a magnitude IXRI > Pwh with k2 > 0 we have essentially
established the approximate equivalence of the stability criteria (41) and (12 :;;; 0 and the
fact that certain moving disturbances are also greatly amplified Equation (40) yields
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required to obtain the solutions k 1(w), k2(w) from equation (40) and assume that the distur­
bances considered in section 5 move with the experimentally determined group velocity
CG (see Fig. 5) through the unstable segment of the tube. In other words, we assume the
vibration frequency f(cps) to be related to the wave length A. of the disturbance by

(44)

For our laboratory model we have taken as representative group velocity for the diastolic
phase

CG = 650 em/sec

The corresponding frequency scale is indicated in Fig. 10.

7. NUMERICAL RESULTS OF THE STABILITY ANALYSIS OF THE
HUMAN BRACHIAL

For a quantitative investigation of the stability of the human brachial artery during
the application of the sphygmomanometer it is necessary to know the pertinent geometric
and physical parameters of the brachial in vim. Unfortunately we lack in vivo data on the
parameters defining the elastic properties and the tonus. Limited measurements have been
made on four human brachials obtained at autopsy; all of which were initially pressurized
to 300 mm Hg and deflated to zero several times in order to eliminate hysteresis and thus
assure repeatable results for the pressure-displacement data [34]. It appears from these
measurements that the values of the parameters II/a = 0,1, 0·2. E = 6·9 X 106 dyn/cm1

•

\' = 0'5. TIO/EII = 0·2. 004. Pw = 1·06 g/cm 3 and Pr = 1·00 g/cm 3 selected for the experi­
mental model represent reasonable order-of-magnitude estimates for the human brachial.
We therefore can make use of the results obtained in section 5.2 for the simulated brachial
but have to account for the smaller radius of the brachial (a ~ 0·4 em instead of a = 1·59
em). This change in radius merely causes a change in the frequency scale shown in Fig. 10
by a factor 3·06 if we assume that the wave velocity of the brachial artery during the
diastolic phase is approximately 500 em/sec. For the human brachial we thus find the
stability boundaries «(12 = 0) and curves of constant amplification ((11 = - 4 X 104

) given
in Fig. It.

We note that the conclusions deduced in section 5 from the theoretical analysis equally
apply for the human brachial. Furthermore, we see from Fig. 10 that for the assumed
parameter values the range of (-l1P)crit is approximately + 2·7 to + 15·5 mm Hg for II/a
values between 0·1 and 0·2. (These val ues for ( -l1p)crit increase. of course. proportionately
if Young's modulus is increased.) This result compares favorably with the clinical data
cited in [3] according to which the auscultatory error can be as much as 25 per cent of the
intraluminal pressure.

8. CONCLUSIONS AND DISCUSSION

The theoretical and experimental results of this investigation support the hypothesis
that the Korotkoff sounds at diastole are due to a dynamic instability of the brachial
artery, the instability being induced by the application of a pressure cuff. However. for
further substantiation the experimental studies conducted so far should be e'Xtended to
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include recordings of the actual dynamic response of the compressed portion of the blood
vessel' or its simulated counterpart during the generation of Korotkoff sounds. We can
readily incorporate the effects of the semi-fluid tissue surrounding the brachial artery in a
mathematical formulation. An extension of the theory to include

(a) effects of a nonisotropic elastic behavior of the blood vessel,
(b) the time variation of the pulse pressure during the Korotkoff sound generation,
(c) the nonuniformity of the pressure exerted by the cuff on the brachial,
(d) the viscosity of the blood and surrounding medium, and
(e) nonlinear effects of large displacements and velocities

would entail a substantial increase of the complexity of the analysis. But for an accurate
theoretical prediction of the Korotkoff sound spectrum, some of the effects listed above
may have to be taken into account. Beside this, the availability of reliable data on the
elastic properties of the brachial in vivo would be required.
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Resume-Une analyse theorique du pMnomene des sons Korotkoff a la diastole est presentee avec des resultats
experimentaux. La formulation de l'analyse mathematique est basee sur des faits derives d'experiments fonda­
mentales avec un modele de laboratoire qui simule l'artere brachiale et Ie sphygmomanometre et qui demont­
rent les sons Korotkoff sous conditions contr6U:es. Les sons Korotkoff a la diastole sont interpretes comme un
phenomene d'instabilite dynamique, oscillations d'une amplitude allant s'aggrandissant, I'instabilite etant
induite par l'application d'un manchon faisant pression. Les resultats de l'analyse verifient les observations
experimentales en ce qui concerne la longueur du manchon, l'epaisseur et l'elasticite du vaisseau it la pressIOn
diastolique. lis produisent egalement de bonnes approximations pour la difference entre la pression auscultatoire
diastolique et Ie minimum veritable de la pression dans l'artere simulee aussi bien que dans la brachiale humaine.
Le resultat indique que Ie resultat auscultatoire est toujours plus eleve que Ie minimum veritable de la pression
dans Ie vaisseau par un degre qui depend des proprietes physique et geometriques du vaisseau. A part cela,
l'analyse theorique predit que les sons Korotkoff pres de la pression diastolique ont des composants it basse
frequence predominante et avec la pression du manchon augmentant, les sons non seulement deviennent plus
intenses mais aussi commencent ainclure des composants ayant une plus grande hauteur de son.

Zusammenfassung-Es wird eine tbeoretische und experimentelle Analyse der Erscheinung von Korotkoff
Tonen bei der indirekten Bestimmung des Blutdruckes prasentiert. Die mathematische Formulierung der Theorie
beruht auf grundlegenden Versuchen an einem Laboratoriumsmodell welches die arteria brachialis und die
Manchette des Blutdruck Apparates nachahmt und Korotkoff Tone unter kontrollierten Bedingungen erzeugt.
Die Korotkoff Tone wahrend der diastolischen Phase der Blutdruckmessung sind als eine Erscheinung von
dynamischer Unstabilitat (Schwingungen mit exponentiell wachsenden Amplituden) dargestellt wobei die
UnstabiIitat durch die Druckmanchette verursacht wird. Die analytische Ergebnisse bestatigen Versuchsbeo­
bachtungen hinsichtlich der Einftiisse der Manchettenlange, der Wanddicke und Elastizitat der Arterie auf den
Messwert des diastolischen Druckes. Ausserdem geben sie gute Annaherungen fUr den Unterschied zwischen
dem auskultierten diastolischen Druck und dem wahren Mindestwert des Druckes in der simulierten Arterie
sowie in der brachiaIis. Die Ergebnisse zeigen, dass der auskultierte Messwert immer hoher ist a1s der wahre
Mindestwert des jntraluminalen Druckes. Der Unterschied hangt von den physikalischen und geometrischen
Eigenschaften des Geflisses abo Die theoretische Analyse mdiziert ausserdem, dass die Korotkoff Tone in der
diastolischen Phase der Blutdruckmessung iiberwiegend medrige Frequenzkomponenten aufweisen und dass
mit zunehmendem Manchettendruck die Tone nicht nur starker werden aber auch beginnen hohere Frequenz­
komponenten einzuschliessen.

AOc:TpaKT-npe.o.naraeTcR Ha paccMoTpeHHe TeopeTHqecKHH aHaJlH3 RBJIeHHll 3SyKOB KOpoTKoBa ll)H
.o.HaCTone, sMecTe c 3KClIepHMeHTaJlbH"'MH pe3ynbTaTaMIL <!>OPMYJlHposKa MaTeManlqeCKOrO aHaJlH3a
ocHos",saeTcR Ha cjIaKTax, nOJlyqeHHblX H3 OCHOBHblX OUblTOB C Jla60paTopHoH Mo.ueJIblO, KOTopali
CHMyJlHpyeT IIJleqesylO apTepHIO H ccjlHrMoMaHoMeTp Ii, KOTopali o6pa3yeT 3ByKIi KOpoTKosa npH KOHT-
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pOJIHpyeMblx YCJIOBHflX. 3BYKH KOpoTKoBa npH ,UHaCTOJIe 06bllCHlI1OTClI, KaK lIBJIeHHe ,UHHaMH'IeCKOH

HeycToH'IHBOCTH (KoJIe6aHHfl C yBeJIH'IeHHOH aMnJIHTy,UoH), HeycTOH'IHBOCTH, KOTopall Bbl3blBaeTClI

npHMeHeHHeM MaHlKeTbl ,UaBJleHHfl. Pe3YJIhTaThl aHamna nO,UTBeplKllalOT 3KcnepHMeHTanhHhle Ha6nlO­

,ll,eHHfl OTHOCHTenbHO 3lPq,eKTOB MHRbl MaHJKeTbl, TOJIUUlHhI CTeHKH H 3JIaCTH'IHOCTH cocy,ll,a no,ll, ,ll,HaCTO­

JIH'IecKHM ,ll,aBJIeRHeM. OHH TaKiKe xopowo corJIacYIOTcll C pa3HHueH Me:llCJlY ,nHaCTOJIH'IecKHM ,UaBJIeHHeM,

nOJIy'leHHhIM nYTeM BblCJIYIllHBaHHlI H .ueHcTBHTenbHbIM MHHHMyMOM JIaBneHHlI B cHMynHpyeMoH apTepHH,

TaK iKe, KaK H B '1enoBe'lecKoA nne'leBoii apTepHH. PeJYJll>TaTbl YKa3blBalOT lIa TO, 'ITO nOKa3aHHlI nyTeM

BblcnYIllHBaHHlI BCer.ua Bblwe, '1eM .ueitcTBHTenhHhlH MHHHMyM .uaBneHHlI, Haxo.ullwerOClI B npOCBeTe Ila

KOJIH'IeCTBO, KOTopoe 3ahHCHT OT lPH3H'IeCKHX H reOMeTpH'IeCKHX CBoiicTB cocy.ua. KpOMe TOro, Teo­

peTH'IeCKHit aHanH3 npe.uCKa3hIBaeT, 'ITO 3ByKH KOpOTKOBa B6nH3H ,nHaCTOJlH'IeCKOrO .uaBJIeHHlI 06JIa,na1OT

KOMnOHeHTaMH npeHMYlliecTBeHHO HH3KOH '1aCTOThl H, 'ITO C YBeJlH'IeIlHeM ,naBJleHHlI MaHiKeTbl, 3ByKH

He TOJlhKO CTaHOBlITCfl 60nee HHTeIlCHBllblMH, HO TaKlKe Ha'lHHalOT BKJlIO'IaTh KOMnOHeHTbl C 60Jlbwelt

BhlCOTOit 3ByKa.


